IGF-I protects cortical neurons against ceramide-induced apoptosis via activation of the PI-3K/Akt and ERK pathways; is this protection independent of CREB and Bcl-2?

نویسندگان

  • Sandrine Willaime-Morawek
  • Nicolas Arbez
  • Jean Mariani
  • Bernard Brugg
چکیده

Current understanding of IGF-I-mediated neuroprotection implies the activation of phosphatidylinositol-3-kinase (PI-3K), which leads to the activation of Akt/Protein Kinase B. In non-neuronal cells, Akt phosphorylates and activates the transcription factor CREB, implicated in the transcription of the anti-apoptotic bcl-2 gene. This paper further analyses the anti-apoptotic IGF-I action in neurons. We show that IGF-I protects cortical neurons against ceramide-induced apoptosis. Ceramide decreases Akt phosphorylation during apoptotic process whereas a simultaneous treatment with IGF-I increases Akt phosphorylation. Analysis of the signal transduction pathways revealed that IGF-I induces CREB phosphorylation via PI-3K and ERK, whereas simultaneous ceramide and IGF-I treatment decreases CREB phosphorylation. Although an overexpression of Bcl-2 protects cortical neurons against ceramide-induced apoptosis, our data indicate that the Bcl-2 protein level is not modulated during IGF-I, ceramide and/or LY294002 treatment. In consequence, we demonstrated that IGF protects neurons against ceramide-induced apoptosis and that IGF-I protection involves the PI-3K/Akt and ERK pathways; this protection may be independent of CREB and Bcl-2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological evidence for lithium-induced neuroprotection against methamphetamine-induced neurodegeneration via Akt-1/GSK3 and CREB-BDNF signaling pathways

Objective(s): Neurodegeneration is an outcome of Methamphetamine (METH) abuse. Studies have emphasized on the neuroprotective properties of lithium. The current study is designed towards evaluating the role of Akt-1/GSK3 and CREB-BDNF signaling pathways in mediating lithium neuroprotection against METH-induced neurodegeneration in rats. Materials and ...

متن کامل

Protection of Hippocampal CA1 Neurons Against Ischemia/Reperfusion Injury by Exercise Preconditioning via Modulation of Bax/ Bcl-2 Ratio and Prevention of Caspase-3 Activation

Introduction: Ischemia leads to loss of neurons by apoptosis in specific brain regions, especially in the hippocampus. The purpose of this study was investigating the effects of exercise preconditioning on expression of Bax, Bcl-2, and caspase-3 proteins in hippocampal CA1 neurons after induction of cerebral ischemia. Methods: Male rats weighing 260-300 g were randomly allocated into three gro...

متن کامل

Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways.

OBJECTIVE Oxidized low-density lipoprotein (oxLDL)-induced smooth muscle cell (SMC) proliferation requires the coactivation of various signaling pathways, namely sphingomyelin/ceramide/sphingosine-1-phosphate, epithelial growth factor receptor (EGFR), and phosphoinositide 3-kinase (PI-3K) pathways. This study aimed to clarify the respective role and the hypothetical cross-talk between sphingomy...

متن کامل

Therapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: The regulation of MAPK pathway and apoptosis

Objective(s): Genistein, as a phytoestrogen found in legumes, has several biological activities in general and anti-diabetic activity particularly. In this study, we investigated the effect of genistein on proteins involved in β-cell proliferation, survival and apoptosis to further reveal its anti-diabetic potential in the ovariectomized diabetic rat. Materials and Methods: We used three-month-...

متن کامل

Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways.

Apart from its hematopoietic function, erythropoietin (Epo) exerts neuroprotective functions in brain hypoxia and ischemia. To examine the mechanisms mediating Epo's neuroprotective activity in vivo, we made use of our transgenic mouse line tg21 that constitutively expresses human Epo in brain without inducing excessive erythrocytosis. We show that human Epo is expressed in tg21 brains and that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research. Molecular brain research

دوره 142 2  شماره 

صفحات  -

تاریخ انتشار 2005